Cohomology of Flag Varieties and the Brylinski-kostant Filtration
نویسنده
چکیده
Abstract. Let G be a reductive algebraic group over C and let N be a G-module. For any subspace M of N , the Brylinski-Kostant filtration on M is defined through the action of a principal nilpotent element in LieG. This filtration is related to a q-analog of weight multiplicity due to Lusztig. We generalize this filtration to other nilpotent elements and show that this generalized filtration is related to ”parabolic” versions of Lusztig’s q-analog of weight multiplicity. Along the way we also generalize results of Broer on cohomology vanishing of bundles on cotangent bundles of partial flag varieties. We conclude by computing some explicit examples.
منابع مشابه
A Positive Monk Formula in the S1-equivariant Cohomology of Type a Peterson Varieties
Peterson varieties are a special class of Hessenberg varieties that have been extensively studied e.g. by Peterson, Kostant, and Rietsch, in connection with the quantum cohomology of the flag variety. In this manuscript, we develop a generalized Schubert calculus, and in particular a positive Chevalley-Monk formula, for the ordinary and Borel-equivariant cohomology of the Peterson variety Y in ...
متن کاملStabilization of the Brylinski-Kostant filtration and limit of Lusztig q-analogues
Let G be a simple complex classical Lie group with Lie algebra g of rank n. We show that the coefficient of degree k in the Lusztig q-analogue K λ,μ(q) associated to the fixed partitions λ and μ stabilizes for n sufficiently large. As a consequence, we obtain the stabilization of the dimensions in the Brylinski-Kostant filtration associated to any dominant weight. We then introduce, for each pa...
متن کاملThe Quantum Cohomology Ring of Flag Varieties
We describe the small quantum cohomology ring of complete flag varieties by algebro-geometric methods, as presented in our previous work Quantum cohomology of flag varieties (Internat. Math. Res. Notices, no. 6 (1995), 263–277). We also give a geometric proof of the quantum Monk formula.
متن کاملChow Flag Variety and Lawson Homology
The Chow flag varieties are introduced and studied. In a family of pure dimensional projective complex varieties defined via Chow flag varieties, the isomorphism type of Lawson homology of a general member in the family is discussed. Applications to morphic cohomology and motivic cohomology on smooth projective complex varieties are discussed.
متن کاملA Partial Horn Recursion in the Cohomology of Flag Varieties
Horn recursion is a term used to describe when non-vanishing products of Schubert classes in the cohomology of complex flag varieties are characterized by inequalities parameterized by similar non-vanishing products in the cohomology of “smaller” flag varieties. We consider the type A partial flag variety and find that its cohomology exhibits a Horn recursion on a certain deformation of the cup...
متن کامل